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Abstract

The Steering Law has long been a fundamental model in predict-
ing movement time for tasks involving navigating through con-
strained paths, such as in selecting sub-menu options, particularly
for straight and circular arc trajectories. However, this does not re-
flect the complexities of real-world tasks where curvatures can vary
arbitrarily, limiting its applications. This study aims to address this
gap by introducing the total curvature parameter K into the equa-
tion to account for the overall curviness characteristic of a path. To
validate this extension, we conducted a mouse-steering experiment
on fixed-width paths with varying lengths and curviness levels.
Our results demonstrate that the introduction of K significantly im-
proves model fitness for movement time prediction over traditional
models. These findings advance our understanding of movement in
complex environments and support potential applications in fields
like speech motor control and virtual navigation.
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1 Introduction

Consider a children’s game where the objective is to guide a metal
loop along a curvy wire without touching it as shown in Figure 1.
The difficulty of this task is directly influenced by the length of the
path, the size of the loop, and the bends in the wire, but how much
more difficult does it get if we straightened the wire or added an
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Figure 1: A children’s game akin to a steering task. The goal
is to move a metal loop from one end of a wire to the other
without the two components touching each other.

extra bend? The game, while simple, illustrates a broader problem
in human performance modeling.

In Human-Computer Interaction (HCI) research, two models
are commonly used in movement time prediction and task diffi-
culty evaluation. The most prominent one, Fitts’ Law, describes the
movement time taken to perform reciprocal pointing tasks based
on the width of the targets and the distance between them [7]. One
formulation of Fitts’ Law is derived from Shannon’s Theorem 17 in
information theory [25]. In this analogy, information is transmitted
through the human channel, and movements are assigned an index
of difficulty (ID, given in bits) based on the task’s parameters [19].
The amplitude of the movement needed to perform a pointing task
is analogous to signal power, and the width constraint of the point-
ing target is analogous to noise power, limiting the movement time
- the information capacity of the human motor system.

The second human performance model, the Steering Law, pro-
posed by Accot and Zhai, extends Fitts’ Law to model trajectory-
based tasks where users must steer through a constrained tunnel
[1]. Once again, the tunnel’s length and width constraints are used
to determine the index of difficulty of the task.

In HCI research, Fitts’ Law and Steering Law are often applied to
user interface design such as navigating through drop-down menus
and designing button interactions, evaluating the performance of
input devices [2, 26, 35] and comparing the performance of user
groups [29, 38]. There are also proposed models that combine the
two fundamental laws for compound tasks that involve targeted
steering actions [6, 10, 15]. However, as interaction tasks become
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Figure 2: Different types of paths with the same width and
length. A) Straight; B) Circular arc; C) Sinusoidal; D) Path
with corner.

more complex, the limitations of these fundamental models become
apparent. For instance, all of the paths illustrated in Figure 2 would
be assigned the same ID by the Steering Law as they have the same
width and length. Therefore, it is expected that all four paths would
take the same amount of time to steer through, but intuitively, we
know that there would be some variation due to their differing
shapes.

There have been many proposed extensions to expand the Steer-
ing Law for more complex tunnel shapes, such as widening/narrowing
widths [31], tunnels with corners [24], curved paths [18, 22, 32, 36],
paths with sequential segments of varying widths [18, 33, 34], etc.
Specifically in the curved paths case, previous research established
that curvature plays a significant role in steering tasks [21, 36].
However, these studies are limited to scenarios involving constant
curvature, such as circular paths or compound paths with circular
arcs. While these findings are valuable in demonstrating the effects
of curvature, they may not accurately predict user performance
in more complex scenarios where curvature can vary arbitrarily
within a single path, such as 2D graphics segmentation or image la-
beling tasks. The ability to predict the movement time and evaluate
the ID of arbitrarily curved paths would also be helpful in deter-
mining level difficulties in video games such as Osu! [9], Trombone
Champ [27], or even physical ones such as the wire and loop game.
Although they are typically evaluated on hand-based interactions,
human performance models have valuable applications outside of
user interface research in explaining the complexities of other mo-
tor control tasks such as vocal articular trajectories and tongue
movements during speech production [13, 16].

Motivated by the need to enhance the predictive ability of steer-
ing models for a broader range of tasks such as navigation through
arbitrarily curved paths, this study incorporates the overall curvi-
ness of a tunnel task as a critical factor. It is important to note that
while width is a traditional factor in movement models, our current
study does not examine its effects and instead focuses instead on
the implications of curvature. Similar to how the width constraint
is analogous to noise in Fitts’ Law’s physical interpretation of the
task parameters, we hypothesize that the overall curviness of a path
is also a source of noise, meaning that it would introduce variability
in the overall movement time. The contributions of this work are:
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(1) We include a new factor, the total curvature parameter K,
into the Steering Law to account for varying curvatures,
creating models that are more applicable to a broader range
of steering tasks;

(2) We validated model variations and compared their fitness
with models derived from previous work in a mouse-steering
experiment with 20 participants on tunnel paths of varying
lengths and curviness levels. We used a 3 L x 3 K x 15 rep-
etitions x 20 participants design providing 2700 trials. Our
results showed that the introduction of K significantly im-
proves the Steering Law model movement time prediction;

2 Background

In this section, we discuss the development and application of the
Steering Law, focusing on its base formulation as well as the various
extensions that have been proposed to address more complex paths.

2.1 Fitts’ and Steering Law Models

Fitts’ Law [7], developed for reciprocal 1D target selection tasks, is
given by:

MT=a+b-ID (1

ID =log, (%) 2

where a and b are empirically determined constants, L is the dis-
tance between the two targets and W is the width of the targets. The
model describes a linear relationship between ID and the movement
time MT. It was later extended for 2D target tasks with different
approach angles and target heights [4, 20].

By framing 2D steering tasks as a series of small pointing tasks
along the length of a path, Accot and Zhai applied Fitts’ Law to
compute the cumulative effect of small target acquisition tasks and
obtained the Steering Law [1]. The general form is expressed by
the following equation for a path C of width W (s) at path length s:

ds
D= ®)
cW(s)
In cases where path width is constant, the ID can be rewritten as:
L
ID = — 4
= @

The ID of a steering task is also related to MT in the same linear
relationship as Fitts’ Law in Equation 1.

2.2 Steering Law Extensions

In Accot and Zhai’s original work, the Steering Law was validated
for 3 different types of paths: a straight tunnel of constant width, a
straight tunnel of decreasing width, and a spiral tunnel of increasing
width [1].

In a later work, it was verified on circular paths of constant cur-
vature [2]. However, the data was analyzed separately from straight
paths and the authors note that circular paths were significantly
harder than straight paths, indicating that curviness may have a
factor to play in the overall movement time.

Pastel’s work extended the Steering Law to paths with corners, a
form of path complexity involving a change in curvature that devi-
ates from the traditional straight and uniform paths [24]. His study
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modeled the task as a coupled motion of steering through a straight
path and pointing at the corner, and found that the corner angle
had a significant effect on the overall movement time. However,
since the study focuses on discrete corner angles, the applicability
to paths with continuous curvature variations remains unexplored.

Liu et al. investigated the effects of path curvature and orienta-
tion in 3D interactive steering tasks through experiments where par-
ticipants used a pen input device to navigate a virtual ball through
paths of varying but fixed length, width, curvature and orientation
[17]. They found that the curvature and orientation of the circular
arc path significantly influenced the overall steering time. This is
in contradiction to the original Steering Law formulation, which
only depends on the length and width parameters. Specifically for
the curvature effect, they found that a model of the form:

L
logyq (W) +ck
where k is the curvature of the circular arc provided the best fit to
the experiment data. !

In another study, Liu and Liere extended their experiment to
include scenarios where path properties change dynamically during
a task by joining semicircular arcs of different widths and curvatures
to form a complex tunnel shape [18]. They compared the average
steering velocities for each of the tunnel shapes, as well as for
each type of tunnel section (J-joints and S-semicircles) within each
tunnel shape. Although they did not propose a model, they have
found that the average velocity decreases when navigating through
J sections and that curvature is highly correlated to the average
velocity through S sections. The sectioning and speed analysis
approach they employed was useful in this case since the complex
tunnel shape was composed of simple circular arcs. This approach,
however, may not extend well to scenarios where curvature is not
uniform.

Drawing inspiration from the 2/3 Power Law relationship in
curved trajectories, Nancel and Lank proposed an augmented model
to accommodate paths of varying curvature and width [22] of the

form: p
MT =a+?V / S R 6)
c W(s)-R(s)!/3

where R(s) is path C’s radius of curvature at path length s. Similar
to Liu and Liere’s experiment, their steering task shape consisted of
compound paths of joint circular arcs. In their experiment however,
each arc had smoothly varying widths, different arc angles and
orientations. It remains to be seen how the model performs for
paths of arbitrary curvature.

Yamanaka and Miyashita investigated how the path curvature
of simple circular arc paths affects movement time in pen-steering
tasks [32]. They fitted several regression models to predict the
average speed and movement time based on width, length and the
radius of curvature of the arc, and proposed a model of the form:

log;y(MT) =a+b (5)

MT=a+b—F— )
Although the model showed good fit to the data, it was only vali-
dated on simple circular arcs.

The logarithm used by Liu et al. was base 10. We keep the same form here for
consistency.
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While previous extensions have expanded the Steering Law to
accommodate diverse path types, they do not capture the steering
behavior in paths with non-uniform, arbitrary curvatures, which
our research aims to address directly. Distinctively, we focus on
fixed-width paths, allowing us to isolate the effects of curvature
without the confounding influence of width changes.

3 Model Derivation

Building on the limitations identified in existing models, this section
proposes a novel extension of the Steering Law that integrates the
total curvature parameter K to account for the overall curviness of
a path:

Kz‘/c|1<(s)|ds 3)

We return to the information theory basis of Fitts’ Law and the
signal and noise analogy and hypothesize that either a simple model
of the form:

MT=a+bL+cK 9)

where K is an additive noise, or a case where the noise addition is
logarithmic:

MT =a+bL+c-logy,(K+1) (10)
would improve on the model fitness of the original Steering Law.

For 2D parametric plane curves, the instantaneous curvature at
point s along the curve is given by:

o) < 6 16—y <)
(x' ()% + ¢/ (5)2)/2

In a recent experiment, Kasahara et al. employed a sine-wave
shape as one of the tunnel types in an experiment to refine through-
put using effective parameters [11]. They found that the original
Steering Law held up well with the sine wave shape and identified
that the additional effect of curvature should be investigated for
this shape.

In our experiment, we use sinusoidal waveforms created by
adding simple sine-wave shapes of different frequencies and ampli-
tudes as the steering task tunnel shape. Appendix A presents the
details of the curve construction and selection as well as a discus-

sion on the curviness of sinusoidal paths. Each curve is generated
by:

(11)

x(s) =s
a C
(s) == ) sin(AM[i] - ¢ -s)
y(s) = - ZO

Together with Equations 8 and 11, we can compute the total
curvature K of the paths.

In the case of straight paths, both Equations 9 and 10 would be
equivalent to the original Steering Law as the total curvature would
be equal to 0.

It should be noted from Equations 9 and 10 that we have omitted
the W parameter. A common behavior in steering through sharp
corners identified in [24] is ‘corner cutting’, which is the tendency
of users to navigate wide corners by taking a shortcut, reducing
the total movement time. In our experiment, we use a small, con-
stant width for all conditions to reduce corner cutting. Further,
to constrain the scope of our experiment, we are not examining
the potential interaction of width and curvature, leaving that to
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future work. Instead, our study focuses on length and curvature.
The corner cutting behavior is discussed in the Limitations section
as well.

In our analysis, we first compare the fitness of our model with
the base Steering Law model by Accot and Zhai [1] in Equation 4.
We also compare with the fitness of Nancel and Lank’s model [22]
in Equation 6, reformulated to remove the effect of width and using
k(s) = 1/R(s) as:

MT =a+b L/ K(s)1/3ds (12)
C

The model proposed by Yamanaka and Miyashita [32] was derived
for circular arc paths, so we cannot directly compare it to our
proposed models. We will instead adjust their equation as if it was
formulated for a path of arbitrary curvature by using k(s) = }%
for a circular arc and plugging into Equation 8 to obtain K = {“—2,
Rearranging Equation 7 by absorbing the W parameter into the
regression constants, we obtain:

2
L+cK

MT =a+b

(13)

Similarly for the model proposed by Liu et al. [17], we modify
Equation 5 to absorb the width term into the regression intercept
constant, use circular arc relationships to include the total curvature
parameter, and convert it to MT form from the original log;,(MT)
formulation:

MT = 10a+b.1ogw(L)+c§ (14)

All models derived in this section are summarized in Table 4
along with the model fitting results.

4 Experiment
4.1 Setup and Data Acquisition

The experiment was conducted on a Macbook Pro computer with
the output displayed on a 13.3", 2560-by-1600 pixel display. Partici-
pants used a 3200 DPI MSI Clutch GM08 mouse without additional
weights as the sole input device to control the cursor. Hardware
acceleration was disabled for the mouse control and the sensitivity
was fixed for all participants at the 5th notch (from the left of the
scrollbar) in default Apple settings. Mouse movements were polled
and interpolated using cubic splines during post-processing to a
rate of 200 Hz. The setup is shown in Figure 4.

For this study, the laptop display size was chosen for its common
form factor and usage in everyday tasks, capturing natural user
behavior. Participants could adjust their seat height and viewing
angle of the screen to be comfortable. While outside the objective
of this study, future work could extend our findings by controlling
effective screen sizes and viewing angles to establish the move-
ment time relationship between curviness, range of display sizes
and viewing conditions as these are known to impact movement
times [12]. Further, this type of study could determine whether
large visual angles are associated with more efficient motor control
strategy adoption when increased curviness makes the task more
difficult, similar to [12]’s finding for Fitts’ type tasks.
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4.2 Participants

20 participants (9 women, 11 men) were recruited from the Univer-
sity of British Columbia’s Vancouver campus for the experiment.
All participants had normal or corrected-to-normal vision. 4 par-
ticipants were in the 19-24 age group and 16 participants were in
the 25-34 age group. In the background survey, 18 participants re-
ported that they used the mouse daily, 1 participant used the mouse
a few times a week, and 1 participant a few times a month. All
participants reported that they typically used the mouse using their
right hand and subsequently performed the experiment using their
right hand. All participants successfully passed a tutorial that was
performed at the start of the experiment to evaluate their speed
and accuracy, as described below. The experiment was conducted
under approval from the university’s behavioral research ethics
board (Certificate Number: H24-01850).

4.3 Task

Participants were asked to move the provided mouse to steer a
cursor as quickly and as accurately as possible through the displayed
tunnels of varying conditions. For each trial, the subject performed
a series of actions: click the start button, steer the cursor through
the tunnel to reach the other side, click the flag button, steer the
cursor back through the tunnel to reach the starting point, then click
the end button. The action was reciprocal to account for potential
directional effects and the steering direction was from left to right,
then right to left. The start and end buttons were always at the
same location and spaced 1300 pixels apart. A visual example of all
of the trial types from the experiment is shown in Figure 3.

4.4 Design and Procedure

The study was divided into 2 phases: the tutorial phase and the ex-
periment phase. In the tutorial phase, participants were introduced
to the same 9 types of paths that they would later encounter in
the experiment phase. The sequence of the tutorial tasks was pre-
randomized and standardized across all participants. Error circles
were displayed on screen whenever the subject’s cursor exited the
tunnel’s boundaries. The participants’ steering speed and accuracy
were logged for a moving window of 8 trials. The tutorial phase
ended when a participant reached the practice threshold, or if they
performed 30 trials without reaching this criterion. In the latter
case, they would not move onto the experiment phase. The practice
threshold was defined by maintaining a consistent cursor speed
with a coefficient of variation below 0.15 and achieving an average
error rate of less than 2 cursor exits per trial across the moving
window. These limits were set based on findings from prior pilot
studies.

The experiment phase was divided into 27 blocks of 5 trials
each, with a 15-second break between blocks. The subject’s cursor
position and movement times were logged from the moment they
clicked the start button until they completed the round-trip for
each trial. If a participant exited the defined path, the error was
logged, but the participant was allowed to proceed without visual
interruption or restarting,.

A within-subjects study design with repeated measures was
used. Independent variables were total curvature and length, with
3 levels each. Tables 1 and 2 show a summary of the parameters
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Figure 4: Hardware setup for the experiment and mouse
sensitivity settings.

for each trial. For each combination of factors, subjects performed
15 repetitions which were divided into 3 blocks of 5 trials. In total,
each participant performed 135 trials and took approximately 1
hour for the entire experiment.

The sequence of blocks for the experiment was initially ran-
domized and subsequently reversed for half of the participants to
mitigate the learning effects throughout the experiment. Complete
counterbalancing was not feasible due to the size of our study.
Additionally, the orientation of the trials was pre-randomized. A
flipped trial involves mirroring the curve across the horizontal axis,
preventing participants from anticipating the initial direction of
the path at the start of each trial. Figure 8 in Appendix A shows a
visual example of ‘L0-KO0’ in its original and flipped orientations.

We fixed the width of all trials at 50 pixels to focus on the curva-
ture effect. It has been demonstrated in the past that corner cutting
is a common behavior when navigating through corners, decreas-
ing the overall movement time as the width of the path increases
[24]. In our case, the peaks of the sine wave are visually similar
to corners. Therefore, we chose a fixed width which limited this
behavior but was not too small as to induce too many steering
errors.

It should be noted that the lengths of the curves within each L
level vary slightly due to the methods used in their construction.
In the following sections, L and K are used for ANOVA, while
the actual values of L and K are employed in the linear regression
model fitting process.

5 Results and Discussion

5.1 Movement Time (MT)

We first perform repeated measures ANOVA with Greenhouse-
Geisser correction for the movement time. Figure 5 a) illustrates the
movement time for each trial averaged across n = 15 repetitions.
From the ANOVA results, we observed statistically significant main
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Table 1: Lengths distribution per L

L | Mean (px) Std. (px)
0 1500.10 2.25

1 1882.33 2.23

2

2319.75 16.18

Table 2: Total curvature distribution per K

K | Mean (px) Std. (px)
0 10.00 0.00
1 16.00 0.00
2 22.00 0.00

effects of L (F = 216.55; p < 0.001;1712J = 0.402) and K (F = 29.13;
p < 0.001; 1712, = 0.049). We also found statistically significant but
small interaction effects for L x K (F = 3.95; p < 0.05; r712, = 0.008),
which leads us to the addition of an extra interaction factor L - K to
Equations 9 and 10, creating the new models:

MT=a+bL+cK+dL-K (15)

MT=a+bL+c-logy(K+1)+dL-K (16)

It is unclear what the information theoretic analogy for this in-
teraction term would be. However, in a previous work by Yamanaka
and Miyashita, they found that the inclusion of a significant inter-
action factor between the width and the reciprocal of the radius of
curvature of a circular path resulted in higher model fitness than
alternative models without it [32]. Thus, we also investigate the
effect of adding this significant interaction.

Table 3 shows a summary of the measurements for each of the
trial types. As the curviness of a path increases, the movement time
also tends to increase. The only exception is in trial ‘L2-K2’, which
has an unusual section as we discuss in the Limitations section.
This indicates that the steering task becomes increasingly more
difficult the more curvy the task trajectory is, similar to findings
from previous works [17, 21, 32, 36].

5.2 Out of Path Movement (OPM)

To examine the effects of the path parameters on the error rate,
we use the OPM, a measure introduced by Kulikov et al. [14]. This
is calculated as the percentage of sampled points during a partic-
ipant’s trial that fall outside the boundaries of the drawn tunnel.
We found statistically significant main effects of L (F = 23.062;
p < 0.001;7% = 0.112) and K (F = 12.639; p < 0.001; 7% = 0.096).
We did not find statistically significant interaction effects for L x
K. Figure 5 b) shows the boxplot of the results, overlaid with the
individual participant data.

5.3 Average Speed (Vi)

The average speed is calculated as the amount of distance traveled
by the cursor divided by the total time taken to complete the trial
(in px/ms). The results are shown in Figure 5 c). We did not find
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statistically significant main effects for L, but found a large, sig-
nificant effect for K (F = 74.074; p < 0.001; r]f, = 0.083). We also
found a small but statistically significant interaction effect for L x K
(F=17.299p < 0.01; 17;; = 0.017). We can note that as K increases,
the average speed decreases. This is in accordance with past studies
[21, 32] and also the intuition that as a path gets curvier and more
difficult, users slow down.

5.4 Learning Effects

Consistent with expectations, post-hoc analyses revealed a small
but significant learning trend within each block (F = 2.988; p <
0.05; 7712, = 0.002) and a large, persistent learning effect over the
course of the experiment (F = 11.285; p < 0.001; qg = 0.209).

To further investigate the learning process, we applied regression
analysis for each trial type and participant to estimate the coeffi-
cients of the power law of practice, defined as: MT (n) = a-(n+1) -b,
where n is the number of trials completed, a represents the initial
performance level and b reflects the learning rate specific for each
trial type and participant [23]. Our results indicated no statistically
significant difference (p > 0.05) between the learning rates (b)
across the trial types, indicating that all trial types were learned at
comparable rates.

5.5 Model Fitting

Table 4 describes the linear regression coefficients, adjusted 2
values, and their Akaike Information Criterion (AIC) values for
the MT models [5]. Similar to other recent studies on Steering
Law extensions comparing models [11, 30, 32], we use AIC as the
comparison metric as it balances the model fit and complexity. A
lower AIC value indicates a better model. To check the fitness
visually, Figure 6 shows the fitted models for MT = a+b - ID on the
average values for each trial type (Ng;; = 9). As well, the data points
for each trial type and participant, averaged across 15 repetitions,
are plotted in the same graph (Nyozq; = 180).

From the linear regression results in Table 4, we can see that
the models described by Equations 15 and 16 show the best fits in
terms of AIC and adjusted 2. While these two models contain the
most free parameters, raising potential concerns about overfitting,
AIC and adjusted r? are criteria designed to penalize complexity.
To address any residual concerns, we perform cross-validation in
the next section. It should be noted that the regression coefficient
for the interaction term is statistically significant (p < 0.05), which
is in line with our ANOVA results. This suggests that there is a
need to include the K - L term.

Models described by Equations 9, 10, 13 and 14, also exhibit
strong performance in terms of AIC and adjusted r2. All four mod-
els have AIC values within 2 units of each other, which indicates
that they show comparable fitness. Since they are within 10 units of
AICminimum (133.4), we consider them to be valid representations
of the data. Most importantly, all four models incorporate the total
curvature term K and outperform the base Steering Law model
(Equation 4), N.B., as it does not account for curvature variations in
any way. They also outperform the model described by Equation
12, which uses an alternative parameter based on the 2/3 Power
Law for unrestrained movement [22, 28]. In the original work by
Nancel and Lank, this model was evaluated on compound paths
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Table 3: Summary of data distributions for the Movement Time (MT), Out of Path Movement (OPM) and Average Speed (v40g)

for each of the 9 trial types.

Movement Time (ms) Out of Path Movement (%) Average Speed (px/ms)
Trial ID Mean Std. Mean Std. Mean Std.
L0-Ko 11932.85 2724.46 0.0021 0.0024 0.261 0.058
L0-K1 13084.73 2439.85 0.0013 0.0020 0.232 0.041
L0-K2 14809.09 3480.69 0.0005 0.0007 0.205 0.049
L1-Ko 15867.06 3521.73 0.0028 0.0031 0.250 0.052
L1-K1 17152.55 4598.70 0.0027 0.0020 0.235 0.063
L1-K2 18038.69 3587.48 0.0019 0.0021 0.215 0.041
L2-Ko 20092.95 4214.74 0.0052 0.0042 0.242 0.043
L2-K1 21704.08 5663.71 0.0034 0.0029 0.229 0.057
L2-K2 21432.13 4601.69 0.0018 0.0017 0.224 0.046
a) b) , , c)
36000 : 0.420 :
0.015
30000 s —~ 0.360
<0012 2
5 5 3
£ 24000 5 = 0300
0 2 0.009 g
g 18000 ) § 0.006 % 0240
2 g
5 z
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6000 : : 0000 i - i 0120 ! !
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\971‘ VQ* VQ* V,\:l‘ V.\:l‘ Vd‘ \.}7’? \.}z’r \.}* VQ* v“* \971‘ V.\:l‘ Vd‘ \>:l‘ \.}71‘ \.}:’r \.}* \9* &t’r \971‘ V.\:l‘ Vd‘ V,\:l‘ \.}71‘ \.}:’r \.}71‘

Trial Type

Trial Type

Trial Type

Figure 5: Plots of the a) Mean total time, b) Out of Path Movement, and c) Average Speed for each of the 9 trial types. Note that
the boxes present the Interquartile Range (IQR) and median, while whiskers extend to 1.5 * IQR. Each color in the strip plot

represents a different participant.

with discontinuities in the width and curvature constraints not
present in our paths, which may require additional adjustments in
user behavior to transition between constraints. In addition, the
original Power Law relationship between the radius of curvature
and movement speed is applicable to motion segments marked by
landmarks such as cuspids and inflection points. In Nancel and
Lank’s experiment paths, joints between circular arcs are inflection
points, and their binning of radii of curvature adheres to the seg-
mented motion assumption. These differences likely contributed
to its reduced performance on our experimental curves. Overall,
these findings strongly suggest that the inclusion of the parameter
K improves the predictive accuracy of Steering Law models.

The models adapted from Yamanaka and Miyashita [32] as well
as Liu et al. [17] underperformed slightly compared to our pro-
posed models. Since they were originally designed for simple or
compound uniform circular paths, these models required modifi-
cations to fit our specific experimental conditions involving 2D
paths of fixed width and arbitrary curvature. We suspect that the
transformation of these models—by assuming constant curvature
as a specific instance of arbitrary curvature—might have left out

terms that could further explain the variation in data observed in
our study. Despite these differences, the relatively strong perfor-
mance of these adapted models confirms their validity and utility
in contexts similar to our experimental setup.

Returning once again to our proposed models derived from the
signal and noise analogy, our model fitting results suggest that the
curviness of a path may contribute to a logarithmic noise addition,
as indicated by the lower adjusted r? in Equations 10 and 16 com-
pared to their counterparts in Equations 9 and 15 The regression
coefficient for the curviness term also has a smaller p-value in the
logarithmic forms, suggesting a stronger effect. However, the cur-
rent study’s range of K values may be too narrow to capture the full
behavior of this relationship. Expanding the range of K in future
studies, especially the inclusion of K = 0 in straight paths, could
provide further insights into the nonlinear noise addition.

By examining the regression coefficients for the models described
by Equations 12 and 14, we see that the a constants’ 95% confidence
interval ranges include zero and non-significant p-values, which in-
dicates that these models may perform better without this term. By
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Table 4: Regression coefficients (with 95% confidence intervals), adjusted r? and AIC values for models predicting MT. Note that

* k%

, **, and *** indicate p < 0.05, p < 0.001, and p < 0.0001 respectively.

Eqn. | Model (MT) a b c d Adj.r? | AIC
16 a+bL+c- logz (K + l) +dL-K -22052.8* 12.0*** 5238.3 -0.2* 0.99 133.4
[—35672.9, —8432.7] [9.4, 14.7] [1890.6, 8586.0] [—0.3, —0.0]
15 a+bL+cK+dL-K -9579.8* 12.6** 537.2% -0.2* 0.99 134.1
[—15679.0, —3480.6] [9.5, 15.8] [175.6, 898.8] [—0.4, —0.0]
142 * *kk *%
13 a+b I+c K -3771.5 9.7 -13.8 0.981 139.0
[-6375.2,-1167.7]  [8.5, 10.9] [-18.7, -8.9]
10 a+bL+c- 10g2 (K + 1) -8693.6" 9.5%** 1930.3* 0.981 139.0
[—12932.9, —4454.3] [8.3, 10.7] [1032.6, 2828.1]
9 a+bL+cK -3647.4" 9.5%** 170.1* 0.979 140.0
[—6368.9, -925.9] [8.3, 10.7] [85.8, 254.3]
K
14 | 10%+blogi(L)+e T 0.2 1.2¢% 8.1* 0.978 | 140.7
[-0.4,0.8] [1.0, 1.4] [3.9, 12.3]
4 a+blL -980.0 9.5%** 0.911 152.6
[—5768.9, 3809.0] [7.0, 12.0]
12 |a+bL [, Kk (s)1/3ds -335.0 0.04** 0.793 | 160.1
[-7777.8, 7107.8] [0.0, 0.1]
40000 Equation [4] 20000 Equation [9] 10000 Equation [10] 0000 Equation [15]
—— MT =-979.95 + ID * 9.52 —— MT =-3647.39 +ID*9.5 —— MT =-8693.59 + ID * 9.5 —— MT =-9579.8 + ID * 12.62
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40000 Equation [16] 20000 Equation [12] 20000 Equation [13] .8 Equation [14]
—— MT =-22052.76 + ID * 12.02 —— MT =-334.98 + ID * 0.04 —— MT =-3771.48 + ID * 9.69 —— 10g10(MT) = 0.2 + ID * 1.21
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Figure 6: Visualization of model fitness of MT (or log;,(MT) for Equation 14) plotted against ID for each model.
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refitting the data to a modified version of Equation 12 without an in-
tercept MT =b L fC K(s)1/3ds), we obtain b = 0.0347[0.032, 0.037]
with p < 0.0001, adjusted r? value of 0.819 and an AIC value
of 158.1, exhibiting an improvement in model fitness. Then, do-

ing the same with Equation 14 (MT = 10blogn (L) +e ), we obtain
b =1.267[1.258,1.276], ¢ = 8.887[5.521,12.253] with p < 0.0001,
adjusted r? value of 0.978 and AIC value of 139.8. The slight im-
provement may simply be due to the model using one less pa-
rameter. The improved forms of these two models are used in the
cross-validation.

5.6 Cross-Validation of Models

We conduct a form of 5-fold cross-validation to further assess the
potential for overfitting, despite the ability of AIC and adjusted
r? measures to balance out model complexity with fitness. During
the model fitting process, our dataset comprised of 9 data points,
one for each combination of L and K, with each point obtained
from the average movement time across all participants and for
15 repetitions of each trial type. For the cross-validation analysis,
each of the models is fitted 5 times, each time using 9 datapoints
computed from the average of 12 of the 15 repetitions. For each
fold, the models are tested on the average of the last 3 trials left
out. The average Root Mean Square Error (RMSE) values across the
5-fold validation are shown in Table 5.

The results indicate that the models incorporating the L - K
interaction term (Equations 15 and 16) consistently have the highest
performance, as indicated by the lowest RMSE values. Based on
the cross-validation results, we can conclude that overfitting is not
a concern in these models, even with the inclusion of additional
terms.

Table 5: Average Root Mean Square Error values computed
across 5-fold cross validation

Eqn. Model (MT) RMSE

16 a+bL+c-log,(K+1)+dL-K 372.33

15 a+bL+cK+dL-K 381.18

13 a+b L 480.76

10 a+bL+c-log,(K+1) 480.88

9 a+bL+cK 498.62

14 (without a) | 10b1og0(L)+e T 535.36
4 a+bl 967.33

12 (without a) | b L+ [..k(s)!/3ds 1435.43

5.7 Limitations and Future Work

The main limitation of our study is the exclusion of the width pa-
rameter as one of the independent variables in our trials. We expect
that the corner cutting behavior can be better understood through
analyzing tunnels of different widths. For instance, as seen in Figure
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5 a), the trial ‘L2-K2’ had a lower average movement time than ‘L2-
K1’ despite the increase in curviness. We suspect that this behavior
is due to the very small undulations in the middle portion of the ‘L2-
K2’ trial that allows the section to be bypassed as a straight tunnel
task. A visual inspection of the plotted heatmaps of the trajectory
frequencies of all 300 repetitions of the L2 trials, shown in Figure 7,
supports this hypothesis. The participant trajectories do not follow
the undulations in the middle section of ‘L2-K2’, suggesting that
the large width tolerance of the tunnel allowed participants to ‘cut
corners’. We suspect that a narrower tunnel would result in longer
movement times.

Additionally, the heatmaps highlight that areas of highest curva-
ture (i.e. the sharpest corners) are more brightly colored than the
rest. This may correspond to the ‘corner aiming’ behavior identified
in [24], which happens in narrow corners. The corner cutting and
aiming effect could be interpreted as participants using a perceived
motion model, preemptively adjusting their movement to avoid
unnecessary corrections, reducing the noise transmitted through
the human channel (i.e. the curviness of the path) and thereby de-
creasing the ID of the overall task. Interestingly, incorporation of
predictive movement models and linguistic and physical constraints
for reducing the ID of the complex trajectory movement tasks, like
tongue movements in speech, may be a strategy for reducing motor
control load while speaking [8].

In future work, incorporating effective parameters into the mod-
els such as W, and L., which account for actual user behavior,
could improve the movement time prediction as demonstrated in
previous studies [11, 14, 37]. Specifically, W, is computed from the
standard deviation o of movement coordinates perpendicular to
the centerline of the tunnel as: W, = 4.133 o.

We represents both the utilization rate of the entire width of
the tunnel as well as a measure of error. This is especially impor-
tant in the information-theoretic analogy to understand how the
variability in noise (width and curviness constraints) perturbs the
movement [19]. Understanding how W, interacts with the curviness
of the tunnel would provide more insight on corner cutting/aiming
behaviors.

For a future study on the effects of curviness and width, an addi-
tional parameter that could be used is the curviness of the shortest
path through the tunnel between the two endpoints. Ky, could
potentially account for sections that can be bypassed as straight
tunnels as well as the curviness of the shortest edge of sharp cor-
ners.

Another limitation of the study is the restricted range of path
lengths evaluated. Past research suggests that the Steering Law has
operational constraints at different scales of motion [3]. Future work
would involve evaluating the model on both shorter and longer
paths to better understand and decouple the effects of scaling.

6 Conclusion

In this paper, we introduced the total curvature parameter K as a
significant extension to the Steering Law to better account for the
curviness of constant-width paths in movement time prediction
and human behavior modeling. Our study demonstrated that the
inclusion of K improves model fitness, as indicated by the higher
adjusted r?, as well as lower AIC and RMSE values when fitted and
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Figure 7: Heatmap of trajectory frequencies computed over
300 repetitions for each of the L2 trial types.

cross-validated on the data. We suggest the following form:
MT=a+bL+c-logy(K+1)+dL-K

which includes a significant interaction term L - K between path
length and curviness.

We have also adapted models originally developed for uniform
circular paths to be applicable on paths of fixed width and varying
curvature. By excluding width and incorporating the total curvature
parameter K, the models derived from prior work by Yamanaka and
Miyashita (Equation 13) and Liu et al. (Equation 14) have demon-
strated good fitness, effectively capturing a varied spectrum of
curved path scenarios.

The extensions to the Steering Law and the inclusion of path
curviness can help designers understand and optimize user paths
in complex interfaces, such as in menu selections, accessibility
design, lasso operations, image segmentation tasks, etc. Beyond user
interface design, it has applications in areas such as motor control,
virtual navigation, game level difficulty evaluation, and extends
into understanding complex motor tasks like speech production.
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A Experiment Curve Construction and
Parameter Choice

As described in the Model Derivation section, each sinusoidal curve
is generated by:

x(s)=s

C
()= 2N sin(AM[i] - ¢ - 5)
y " ; ¢
b= np - 2w
Xmax
where a is the amplitude, c is the number of sinusoidal functions
used in the overall construction of the curve (ranging from 1 to
3), AM is a list of ¢ angle multipliers, np is the number of periods,
and Xpgx is the maximum value of x (fixed at 1300 px). Table 6
summarizes the lengths and total curvatures of each of the trial

types.

Table 6: Lengths and total curvatures of each of the 9 trial
types.

Trial ID | Length (px) | Total Curvature
Lo-Ko 1502 10
L0-K1 1498 16
L0-K2 1500 22
L1-Ko0 1885 10
L1-K1 1880 16
L1-K2 1882 22
L2-Ko0 2303 10
L2-K1 2322 16
L2-K2 2335 22

To identify possible candidates for each of the trial types, we
conduct a grid search over the sinusoidal function parameters ¢, AM
and np, and the targeted curviness K. For each combination of these
parameters, we solve for the corresponding amplitude a, compute
the total length of the resulting curve, and record the parameter
sets that produce curves in range with the desired lengths. Finally,
through visual inspection of the resulting curves and pilot trials,
we select the most appropriate curve for each L and K combination,
specifically choosing those that minimize corner cutting behavior
and prioritizing matching the lengths of the curves within each
designated category to ensure consistency across trials.

In the case of ‘L2-K2’, alternative curves generated during the
search process for this trial type include those with lengths of 2246,
2421 and 2441 pixels. These were significantly outside the target
range for the L2 category, with ‘L2-K0’ and ‘L2-K1” having lengths
of 2303 and 2322 pixels, respectively. Given the importance of length
consistency in our experimental design, curves that did not meet
this criterion were excluded from consideration, regardless of their
other characteristics.

In addition, another parameter that determines the visual presen-
tation of the trial is its orientation. Figure 8 shows the two possible
orientations of trial ‘L0-K0’.
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Figure 8: The two possible orientations of trial ‘L0-KO0’. A)
Original orientation; B) Flipped orientation.

Chen et al.

A note on sinusoidal waveforms is that while one could attempt
to use its energy parameter E as an alternative to K to represent
its overall curviness. The energy of a finite sine signal y(s) = A -
sin(zT”s) over 1 period Tis E = #. As the amplitude A increases,
the height of the curve described by y(s) also increases, which is in
accordance with the idea that E becomes larger as the path becomes
curvier. However, as the frequency f = 1/T of the signal increases,
say, by double, T is halved. If we compute the new energy of the
function from 0 to 2T, it would still have the same energy as before,
despite the fact that the curve would be subjectively curvier due to
the extra bends. For this reason, we did not choose E to represent
the curviness of a path.
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